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ABSTRACT

This study was undertaken to construct confidence intervals of the common odds
ratio using several likelihood based procedures. The likelihood based procedures for
the construction of confidence intervals of common odds ratio in K 2X2 contingency
tables are derived. Simulations are performed to study the properties of these
procedures in terms of the tail and coverage probabilities and average lengths of
the confidence intervals and the results are presented. Based on the simulation
results obtained in this study, it is concluded that the Bartlett method (B) is most
suitable for constructing confidence interval for the common odds ratio in large

sample design.
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CHAPTER 1

INTRODUCTION

The comparision of two proportions in statistics has been actively studied by
researchers for many years. One approach used for comparision of two proportions
is inference regarding the corresponding odds ratio, a commonly used measure of
association. The inference for the odds ratio is widely used in biostatistics, such
as case-control and follow-up (restrospective and prospective) studies in cancer epi-
demiology. In a case-control study, odds ratio is the ratio of odds of disease oc-
currence among the exposd group and the corresponding odds for the unexposed
group. In a follow-up study, odds ratio is the ratio of odds of exposure for the
disease group and the corresponding odds for the non-disease group.

The key parameter for the case-control study or for the follow-up study is the
odds ratio (9), because it takes the same value whether it is calculated from the
exposure or from the disease probabilities. In the above situation, we deal with only
a 2x2 table. Howe\:‘er, nuisance or confounding factors are involved in many studies.
Confounding is deﬁl'::ed as the distortion of a disease/exposure brought about by the
association of other factors with both disease and exposure. For example, age is a
confounding factor in the case of alcohol consumption and cancer. One of the most
important methods known for a long time used to control the confounding factor,
is to divide the sample into series of strata which are internally homogeneous with
respect to the confounding factors. In such situations, the summary measure will
be the common odds ratio. A full analysis of such series of 2 x 2 tables would be: (1)
to test the homogeneity of the odds ratios in all tables; (2) once such a hypothesis

is not rejected, to test the common odds ratio ¢ = 1, that is, to test that there is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



no interaction between the exposure and disease and (3) if such 2 test fails (that
is, when % = 1 is not acceptable} then to obtain the confidence interval for the

common odds ratio.

Considerable amount of work has been done in this area. For example, Mantel,
Brown and Byar (1977), Tarone (1985) and Paul and Donner (1989,1992) studied
procedures for testing homogenity of odds ratio when the number of strata is fixed
and sample size in each stratum can take any value up to infinity. Liang and Self
(1985) studied procedure for testing homogenity of odds ratios in a large number of
tables with sparse data in each table. Procedures for testing ¢ = 1 were developed

by Cochran (1954), Mantel and Haenzel (1959) and Mantel and Fleiss (1980).

Several point estimators for the common odds ratio exist in the literature. Woolf
(1955) proposed the emprical logit estimator that behaves well for the large data but
not for the sparse data. Gart (1962, 1971) developed unconditional and conditional
maximum likelihood estmators. Mantel and Haenzel (1954) developed the Mantel-
Haenzel (M-H) estimator. Breslow and Liang (1982) recommended a modification
of the M-H estimator based on the jacknife principle. A number of simulation stud-
ies have been conducted to compare the properties (bias and precision) of various
estimators of the common odds ratio (McKinlay, 1975, 1978; Lubin, 1981; Hauck,
Andersen and Leahy, 1982, 1984; Jewell, 1984)

Relatively less attention has been given to confidence interval procedures for the
common odds ratio. Gart (1970) gave an exact and an approximate method to
construct the confidence interval for the common odds ratio. Brown (1981) studied
the validity of three approximate methods developed by Cornfield (1956), Miettinen
and Woolf (1955) for constructing confidence interval for the common odds ratioin a
single 2 x 2 table. Hauck and Wallemark (1983) studied seven methods to construct

the confidence interval in multiple tables. From the above study, the authors have

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



concluded that the method using M-H estimator with Breslow’s variance estimator
provides coverage close to nominal. Robins, Breslow and Greendland {(1986) have
compared six procedures based on various estimators of the variance of the M-H
estimator to construct confidence interval for the common odds ratio. Sato (1990)
devcloped a new confidence interval procedure using the M-H estimator and its
asymptotic variance.

Several likelihood based procedures for constructing the confidence interval for
a parameter in the presence of nuisance parameters are available in the literature
(Bartlett, 1953; Levin and Kong, 1980; Diciccio, 1990; Fraser, 1991). Howcver,
these procedures have not been used to construct the confidence interval for the
common odds ratio. In this thesis, we apply several likelihood based procedures
to construct confidence interval for the common odds ratio. Properties of these
confidence intervals, in terms of coverage, are investigated by simulation.

In chapter 2, we review five likelihood based procedures to construct confidence
interval for a parameter of interest. In chapter 3, we review maximum likeliiiood
estimation of the common odds ratio. In chapter 4, we derive the likelihood based
procedures to construct confidence interval for the common odds ratio. In chapter
5, we conduct a simulation study to investigate the properties of the various interval

estimation procedures derived in chapter 4.
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CHAPTER 2
A REVIEW OF LIKELTHOOD BASED PROCEDURES FOR

THE CONSTRUCTION OF CONFIDENCE INTERVAL

Let f(X;7,p) be a density of a random variable X indexed by v and p, where v is
the parameter of interest and p = (p1,--- , px’)’ is a vector of K nuisance parameters.
Given the sample X;,--- ,X,, denote the log-likelihood by (v, p). Now, define the
likelihood scores % and g—;. Then the maximum likelihood estimates (MLEs) of

the parameters 4 and p = (p1.-+- .px)' are obtained by solving

ol
-6—7—0

and

ol
+— =0, k
Ipx '

0
x

simultaneously.
2.1 Procedure based on the asymptotic properties of MLE
Denote the MLEs of the given parameters v and p = (p1,--- ,px) by ¥ and
= { p1,* ,px) respectively. The asymptotic 100(1 — a)% confidence interval for
v is given by

¥ - (Vvary <7 <¥ +(Vfvary

where ( is an appropriate quantile of a standard normal random variable. The
quantity var(y) is obtained by inverting the Fisher information matrix of (¥, §). The
elements of the Fisher information matrix are the negative of the expected values
of the second order mixed partial derivatives of the log-likelihood function with
respect to the parameters v and p. Thus, {{X,~,p) is the log-likelihood function.

Then the asymptotic variance-covariance of (7, ) is given by

4
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where
&l
Iﬁ"( = - E( 672 )3
o°l
Lyp=—- (a'yap)’
&l
IP’Y = _E( 6[)8‘)’ )3
and
&l
Ipp = —E(W).

The unknown parameters in var(%) are then replaced by their corresponding max-
imum likelihood estimators. Note that I, is a scalar, I, is a 1xK matrix, I, is
a Kx1 matrix and I,, is a KxK matrix.
2.2 Procedure based on Likelihood Ratio

Denote the unconstrained maximum log likelihood by I(%, 5) and the constrained
maximum likelihood by (v, p), where § = {(f1,--+, px)’ which maximize the log-
likelihood function (-, p) for given value of 4. Then the likelihood ratio is given
by

LR =2((},5) - Uv.P))

has a distribution which is approximately chi-square with one degree of freedom.

Thus, the v values that satisfy

LR= 90(’?3&) - 1(795)) < X?I-—-a)(l)

are the approximate 100(1 — @)% confidence limits for «, where xfl_ (1) is the

(1 — a)th quantile of a chi-squared distribution with one degree of freedom.

5
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2.3 Procedure based on adjusted likelihood ratio

Diciccio (1988) and Diciccio, Fraser and Field (1990) developed a confidence
interval procedure for the parameters of a location-scale family of distributions,
where the location may be a function of several regression variables X;,--- ,Xk.
Thus, if £ = 1 we deal with the confidence interval procedure for the parameters of
a two parameter distribution. Let p = (p1,--- ,pr) be the regression parameters
and 7 be the scalar parameter. In many situations, inference for a scalar parameter
in the presence of nuisance parameters requires pivotal quantities. From Diciccio

(1988) the pivotal statistics are,

Pk:"'pk;pka k'__.]-v""K

and
Pry1 = 509(%)-
where g and 4 are the MLE’s of p = (p3,-+-,px) ' and 4. Therefore, the log-
likelihood I+, p) can be written in terms of a vector of pivotals P = (Py,+-- , Prya ).
We denote this as I{{P). It is obvious that the likelihood I(P) attains its maximum
value {(0) at P, =0, k=1,---,K + 1. Suppose the kth parameter is of interest,
then the associated pivotal is P and the corresponding likelihood ratio (LRy) is

LR, =2 [z(o) - I(P(Pk))]

where I(P(P:)) is the maximized log-likelihood function for a given value of Pj.
The statistic LR is approximately distributed as chi-square with one degree of

freedom. Now define the signed root of the likelihood ratio by

SR, = —v/LRy, P, <0

and

SRj = ++/ LRy, P >0.

6
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The distribution of SR can be approximated by the standard normal distribution,

which has an error of order n~%. That is
Pr(Pk < Pk) = (I’(SR‘) -+ O(n:il)’

where @ is the distribution function of a standard normal random variable. Many
researchers including Brandorff-Nielsen (1986), Diciccio {1984, 1988), Efron (1985)
and McCullagh (1984; 1987) studied on further reduction of error and concluded
that mean and variance adjustment to the approximate standard normal distribu-

2

tion of the signed root likelihood ratio statistics reduces the error to the order n™3%.

Thus,
Kk -2
Pr(P. <pi) = ‘I’("—"L—-——)-*-O( )

where g, and ¢ are the mean and variance of SRy, respectively. The above equa-
tion can not be used as the exact values of mean and variance are not available.
However, in principle, they can be sufficiently well approximated such that the
above equation remains valid. Diciccio, Field and Fraser (1990) presented a pro-
cedure whereby the mean and variance adjustments in the above equation can be
achieved using a simple formula that involves only first and second order partial
derivatives.
The general form of the approximation is
1|3

ll(P(Pk)) x | Iz

where I is the observed information matrix of order (K + 1) x (K + 1) with Py,

Pr(Py < pi) = 8(SRi) + $(SRy) | 5 +0(nT)

k=1,..,K,K+1 being replaced by zero. I* is the submatrix of I corresponding to
(Pi,-++ s Py, Pagtse-- s Piess) with Py , 5 = 1,..K, K + 1, § # k being replaced
by its maximum likelihood estimate for given value of Pi. | I| 7 and | I*{} are
the square roots of the determinants of the matrices I and I* respectively for k& =

Lo, K+land h(P(P) = | Bi=P.j=1KK+1j#k
(3
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When & = 1, the above approximation reduces to

Pr(P<p)= <I>(SR}+¢(SR)[ ( lzz((o;) ] +0(nT)

where

Dz
L) = 4502

and ¢ is the density function of N(0,1). Thus, 100(1 — )% approximate lower and

upper confidence limits for the given pivotal (kth) are obtained by solving

Pr(Py < pi) =

W R

and

Pr(Pe<pi)=1-

l\’IQ

Hence, the confidence limits for the kth parameter of interest can be obtained from
the pivotal limits.
2.4 Bartlett’s procedure based on the likelihood score
Bartlett (1953) showed that, in the case of "nuisance parameter” there is an

alternative to maximum likelihood estimator 4 and is given by

ol _, ol
Tlr) = (7 Lrolop 39)

with variance
Iyyp = Iyy - I’IP‘Ip—pI Tor.

Also, he showed that ——2_ is a standardized normal variable. That is,

Y-8

M) . No,1).

Ve

An approximate 100(1 — )% confidence interval for 7 can then be obtained by

solving
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where Zs is the appropriate quantile of the standard normal random variate.
2.5 Bartlett’s procedure corrected for bias and skewness
When the nuisance parameters p in T'(y) are replaced by their corresponding
maximum likelihod estimates, the statistic T(v) involves a bias of O(n~%) and is
given by

1 -1 o8l 981.,,,)) 1 .
Bias = B(T(7)) = trace (I ( (675p6p )+2 3 + —tracc (I, M),

where

8%l oI
- = 2 L -1 = o .
M; (E( 870007 ) + Bp; ) I, 1y, j=1,--+ ,K

See, Bartlett (1953), Levin and Kong (1990).
Skewness or the third cumulant of T(v) to the order of n~% is obtained for

s=t=¢q¢=1,..,K, as
oI,

3
Kan) = 2B(55) + 357

oo« OL,
—3;f,,(-E(a o )+2E( p)+3p,,)

8%l oI, orL I
3 ; 2 E PPt + YPe + YPa )
* 23: ; fuf ( P PRI VL PR P

! oI oI oI
-— 2B + Pa Dt + Pq bt + qu’a)
22 2 fkidy ( Bioridrs * ooy T o0, T e
where f = (f1,--+,fk) = I’YPIp_pl'
The statistic T'(y) corrected for skewness and bias are a better approximation

for the normal distribution. Therefore, a more accurate 100(1 — a)% confidence

interval for «y can be obtained by solving
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T(y) _B(T(y) Kstn(Ze—-1)

Vieve Ve 6I§-“,

+73.

10
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CHAPTER 3

NOTATIONS AND ESTIMATIONS OF COMMON ODDS RATIO

3.1 Notations
Consider K pairs of mutually independent binomial variates X;;, X2z with cor-

responding parameters pyr,P2x and sample sizes Ny, Noj, where k =1,--- | K.
X1k ~ B(Nix,p1t)

and

Xor ~ B(Nag, par).

Thus the data for the kth table or for the kth pair or the kth stratum are

1(success) 2(fallure)
1 X1k Nip — Xir Ny
group
2 KXok Noj — Xok Nap.
Ty N, -T; N

and the corresponding table of probabilities for the kth stratum are

1{success) 2(failure)
1 Pk Ak
group
2 P2k a2k

where p1x + qix = 1 and pox + g2k = 1. Thus, g1 =1 — pax and gax =1 — pak.
The odds ratio for the kth table (stratum) is

D1xq2k
k= —

. 3.1
P2xq1k ( )

11
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The alternative name cross product ratio is used for odds ratic as it is equal to the
ratio of the products pirqzs and parqir; the probabilities from diagonally opposite

cells. The odds ratio can be any nonnegative number. In other words
0 < ¥Pr <co.

The odds ratio does not change values when the orientation of the table is reversed
or when the rows become the columns and vice versa. Therefore, it is not necessary
to identify the clssification as the response in order to calculate odds ratio. It is
sometimes more convenient to use log(¥r), the natural logarithm of ;. Because
the odds ratio is symmetric about this value, reversal of rows or columns changes
only the sign. In this study, we consider only the case where the odds ratio is the

same in all strata (tables). That is,

¢k="/)v 0<'§[)<OO

foralk=1,...,K.
3.2 Unconditional maximum likelihood estimator
The distributions of X33 and Xo; are binomials with indices Ny; and Noi and
probabilities p;; and poy respectively. The likelihood L, dropping the combinatorial

terms, is
K
L H(plk)'\”’ ((hl:)Nu_‘\”‘ (pzk)lzk(qzk)Nzk ~Xak_
k=1

Using equation 3.1 with ¥ = 1, we have

Dor = — Pk
Paix + P1k
and
Q21 =1 — pas.

12
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So the likelihood

by
X1k N —Xis Pik X 21’(111.- Nap —X.
L o T oue ¥ (g™ 2 o
,El (@ Yo + Pk’ Yk + P

and the log-likelihood { is

I

Pik Pik Y1k
I=C+ (X wlog(—) + Niglogq + Xarlog + Ngklog——-—) s
kzﬂ ' ((hk) B T Pk + Pak

K
D1k P
= C+ 3 { (Xuk + Xa)log(BE) + Nyrlogas + Naul — Xaplogd |
(( 1k + Xox) Og(qlk) 110911 rlog o5 LOQ¢)

k=1 Nk

where, C is a constant independent of the parameters ¥, pix, qix. Now, T} =
Xir + Xok. Define pp = log’qlx%, v = logy. Then ’g—:—:- = e, pip = ﬁ_%;—; =

Qr = -f_-;,—f;,,-,; The log-likelihood I can be written as

K

I=C+ Z (Tipr + (Nox — Xar)y — Nirlog(l + €*) — Naglog(e”? + e*)).
k=1

(3.2)

The log-likelihood involves the K + 1 parameters 4 and pi, & = 1,--- ,K. The
maximum log-likelihood estimators of v and p, (k = 1,...,,K) are obtained by
maximizing the log-likelihood (3.2) directly by using IMSL subroutine DUMINF
(IMSL.LIB 1989) . Denote the MLEs of px and v be p¢ and %,. These are the
unconditional maximum likelihood estimators.
3.3 Conditional maximum likelihood

When working with the increasing strata case, the principal distribution of in-
terest will be that of X1z, given Tk, Nyx and Nji. As originally noted by Fisher
(1935), this distribution is the extended (or noncentral) hypergeometric distribution

(Harkness, 1965) which is given by

TN %, )
f(XlkITk’le,Ngk) = Ebku 3 Tk

u=ax (N;:k) (7{:72_12‘)11’1;

13
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where aj =inaXx ( 0, Tk - Ngk), b;; = min (Tk ,N;k).
Then the joint likelihood is

ol WU
k=1 Eu-ak (N;IE) (;‘:rz—ku)wu

By reparametrization of ¥ = €7, we have

i Gt (5%, )™

H Xiw .
e, () (Z2)e™

k=1 Ty —u

From this, the log-likelihood can be wriiten as

K

=7 (Xu7+Ci —logfi())

k=1
where

bi
— le Nzk X1

Xir=as

and C. is a constant independent of the parameter 7.

The partial derivative of I with respect to the parameter « is

A _ 1 afk(v))
= (X“‘ TR oy )

k=1
Now
, Z LY (g Jer X
XJI.,’Y) Xyp -tk
Xrx=bis fi(7)
Further,
by
3fk(v) (Nu->( Nag ) X
—_—t = Xq1. ek
Oy z_: 1 Xk \ Tk — Xax
Xwe=a,
Thus,
' 1 Ofily
B = iy
and

= ZXU. - ZE(Xu,‘Y

k=1

14
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But, for the maximum likelihood estimator of «,
ol
— =0.
Iy
Hence, the maximum likelihood estimator of ¢ is obtained by solving the equation

N K
> X =Y E(Xus7)-
k=3

k=1
This equation can be solved by IMSL subroutine ZBREN. Denote the maximum

likelihood estimator of ¥ by .. This is a conditional maximum likelihood estimator.

15
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CHAPTER 4
LIKELIHOOD BASED CONFIDENCE INTERVAL
PROCEDURE FOR THE COMMON ODDS RATIO
4.1 Confidence interval estimation based on the conditional maximum
likelihood estimator of the common odds ratio.

4.1.1 Procedure based on the asymptotic properties of MLE

From the definition of variance,

Var(Xuk;v) = E(X3s7) = (B(Xus7)

where
Z I\YU‘) (T N2§ )eﬂ'"'
E(X1k§')') = XI 1k «\1k
Y=, fi(7)
and

{:"Ue) Nzi{ )e'lxnk
" -
E(X}i7) = Z X e

Xie=az £:(7)
From chapter 3 we have
K
1 9fi(v)
— = X 4.1
2 w2 T ay ()

so the second derivative with respect to =y is

&l (E 1 #am & 1 0k,
or (Z A oF =T a1 )

k=1 k=1

From fi.(v), we have
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agfk(’)')___ & -2 [ Nk Nap +X1s
o Z Xik X/ \Tr — X1 ¢ )

Nie=ay
So
1 0fi(y)
B = 70y 5y
and
- 1 O*fx
E(X{;7) = m%’;(g—)
Thus,
5 K . K .
2 =- (Z E(X]T&;'Y) - Z(E(Xm:?))-)
v k=1 k=1
K
= —zVa.r(Xlk;“}').
k=1

Now, the asymptotic variance of the conditional maximum likelihood estimator 4,

18
Var(5,) = L
Y B(E)
Therefore,
1

Va"r('}'c) =

I ’ *
o=y Var(Xags )

Thus, an approximate confidence interval estimation for 4. is obtained as

Ye T 25/ Varye

which can be written as

1
Vet Zgy i
Zk:] 'Ua-T(Xlk; 7)

Denote the estimates of the lower and upper limits of the confidence interval for «

(4.2)

obtained from (4.2) by 9as.z and Yasey. Then an approximate confidence interval

for 3, by using the conditional maximum likelihood estimator of +, is
e“mu.

17
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and

e'.Yl\! cU .

Denote these by $pscr and Dater
4.1.2 Procedure based on likelihood ratio
From chapter 3, the conditional log-likeihood is

K
(7) =Y (Xuey + Ci — log £i(7))

k=1
and the maximized log-likelihood, using the maximum likelihood estimator 4. is

Iy
3e) = 3 (Xuade + Cr — logfi(3e)) -

k=1
Thus,

LR =2[l(¥) = i(7)]
N

LX_: X1u(Fe =) + log){‘(m)

The confidence limit for «y using the likelihood ratio procedure is obtained by solving

f&(‘r)

k=1
This equation can be solved by using IMSL subroutine ZREAL. Denote the lower
and upper limits of the confidence interval for v, obtained from (4.3) by Y.z and
4rev- Then the estimators for the lower and the upper limit of the confidence

interval for 7, using the likelihood ratio procedure, are

-~

"chL = e;"'d'

and
&LCU = etiev,
4.1.3 Procedure based on adjusted likelihood ratio

18
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According to the procedure developed by Diciccio, Field and Fraser (1990), as
discussed in chapter 2, odds ratio is the only parameter of interest in the conditional

approach. Therefore, the pivotal statistic is

P
P = log—.
3

By reparametrization of logy = v, we have
P=vy-7.

Therefore,
v=P+%,

where 4 = 4.=conditional maximum likelihood estimator of . From chapter 3, the

conditional log—likelihood 1s

K
i(y) =Y (X1k7 + Ci — logfi(7)) .-
k=1

Then, the corresponding log-likelihood,using the pivotal P, is
K
UPY = (X1t(P +4) + Ci — logfu(P + %))
k=1
When P = 0, the corresponding log-likelihood is
K
1(0) = Z (X211 + Cr — logfi(7)) -

k=1

Hence, the likelihood ratio statistic is

LR =2[l(0) - I(P)]

K "
- _ fily +P)
-‘E(Xw( P)+log= 75 )

19
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From chapter 2, the signed root likelihood ratio is

SR =-VLR, if P<O
and

SR=+VLR, if P>0.

Now, from the log-likelihood, involving the pivotal, we have

8I(P)

L(P)= oP

KN K
= EXM - ZE(XM;'? + P)

k=1 k=1
K
,(0) = — Z Ver(Xi1:9).
k=1
Follwing the procedure in section 2.3, the marginal tail probability for the pivotal

P can be given as

Pr(P < p) = ®(SR) + $(SR) (51}—2- + ——"l:(l;go)) +0(n7).

Hence, the 100(1 — )% approximate lower and upper confidence limits are obtained

by solving

Pr(P < p) = ®(SR) + $(SR) (glﬁ + ——V,‘(’;,go’) = g

Pr(P < p) = #(SR) + $(SR) (é . -—Vl‘(‘pg")) =1-2

respectively. Denote these as Py and Py. Therefore, the corresponding lower and
upper limits of 4 using Diciccio’s procedure are 4 + Pr and 4 + Py respectively.-

Then the lower and the upper limits of the confidence interval for ¥ are

‘&DcL =ettFL

20
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and

Yper = e,

4.1.4 Bartlett’s procedure based on likelihood score
In this approach (conditional), we have determined the likelihood, using only the
parameter of interest 4 (or ). From chapter 2, the alternative to the maximum

likelihood estimate 4., is

ol
T(r)= 5

with variance I,.. Thus, an approximate confidence interval for v can be obtained

by solving

where Za is the appropriate quantile of the standard ncrmal distribution. From

Fisher information matrix
9%l
I*r'r = ‘E('a?)

and also from section 4.1.1 we have

Y

ol
E = Z (X1L- - E(Xlk;'Y))
k=1
and .
2l &
5 == Z Var(Xix;7).
07 k=1

Therefore, an approximate confidence interval for v can be obtained by solving

ey (X1 — B(X137))
\&{;1 Var{Xix;7)

This equation can be solved by using IMSL subroutine ZBREN. Denote the lower

= :EZ%_

limit and the upper limit of v obtained by Bartlett’s procedure by 45,z and ¥p.v.
Then the corresponding lower and upper limits for the confidence interval of the

odds ratio 3 are
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J) BeL = evBeL
and
1/; BelU = e:YBcU .
4.1.5 Bartlett’s procedure corrected for bias and skewness
Since the conditional likelihood involves only one parameter <, from chapter 2,
B(T(y))=0.
The third cumulant for the alternative to the maximum lkelihood estimate for a

single parameter 9., is

3
K (T(2)) = 2B () + 357

Therefore, the 100(1 — «)% approximate confidence interval for v is obtained by

solving
Ka(r)(25 - 1)
T(y) - — ) =25
6L}
Applying
!

Iy = —E('a';ﬁ)’
the partial derivative of I, with respect to v is

ol. &%l ol 8l
o - Plopsy) T Fep)

From section 4.1.1 .
821 K
'é? = - ZVGT(XIL.;’Y).

k=1

Therefore,

ran, (& ol
"E(Wa) = (Lz=1 VaT(Xxk;‘r)) E(g,;)-

22
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But under regularity conditions

al
E(—)=0.
(3)
Therefore,
1ol
e ZL g r5) =0
Thus,
oI i
s
and
3
Ks(T('r))——E(al
But from section 4.1.1
&l _ 1 8H0) = 1 0 »
577 (me o T o)) (44)

Hence, the third derivatives of f. () with respect to v is

z\:[(fgl(v 6f§'(r7))(a fx('r)) (fﬁ?v)(afak'(rﬂ) 6f‘(7))2>]

-5 (D) - (ogrCED)

k=1

But from section 4.1.1, we have

E(X1xi7) = — 1 9fi(v)

O
and
B(KEam) = s TEKD,
Furthermore,

83
B = By

23
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Hence,

E)“l K K o K .
=3 3E(XusNEXEs7) - ) 2(B(Xaus )’ ~ > B(Xds)
k=1 k=1 =1

and
K

;ﬁ Z3E(X1m)E(X ) — 3 2(E(Xus 7)) —ZE(X )-

k=1 k=1

Therefore, the third cumulant of T'(7y) is

K
Ks(T(7)) = = Y 3B(X1e ) B(XEs7) +Z°(E(X1x,'¥))

k=1
K
+ > E(X37) (4.5)

By using the the values for 7'(7) and I, and K3(T(v)) from equations (4.1}, (4.4)
and (4.5) the confidence interval for 7 is obtained as
Ty - 2T (72 1)1z,
o
Thus, the lower confidence limit for 4is obtained by solving
K 3(T(‘7))

2
Y

T('}') 1) +Z%

and the upper confidence limit is obtained by solving

Ks(T(’)’))

2
Y

T(y) - (2% -1) = —Zs.

These equations can be solved by using IMSL subroutine ZBREN. Denote the lower
limit and upper limit of v obtained by Bartlett’s corrected procedure by ¥pccz and

4Bccu- The corresponding lower limit and upper limit of the odds ratio are

'JBCcL = e¥BCeL

and
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4.2 Confidence interval estimation based on the unconditional maximum
likelthood estimator of common odds ratio.
4.2.1 Procedure based on the asymptotic properties of MLE

Gart(1962) showed that the asymptotic variance of the unconditional estimator

-

Py is
n 1[,2
v = =
O.T(d)u) V 3
Where
K ~
v=> Vi
k=1
and

(Vi)™ = (Nuaprrdue) ™ + (NaxPordor) 2.

Also, from section 3.1,

ef* 1
plk_1+ef’*’ qlk_l-{-epk
and
el el
P2k = e 1 err’ G2r = ot 1 epe
Therefore,

le(e:’ + ei"‘)2 + Nzke:’(l + t’;‘i’*)2

V)™ = L
(V) Ny NopVebr

An approximate 100(1 — @)% confidence interval using the unconditional maximum

likelihood estimator of the common odds ratio is given by

- v
e j: Z2 =
¥ VT

Denote the lower limit and the upper limit of the unconditional odds ratio using

asymptotic property of the mle by ¥aruz and ¥pruu-

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.2 Procedure based on likelihocd ratio
Let = (p11,-,P1xc) and ¥ be the maximum likelihood estimator of p =
(P11, -, P1xc)’ and ¢ respectively and the corresponding maximized log-likelihood be
1(3,p). Further, for a given ¥, let § = (f11,--, P1x’)" be the maximum lkelihood es-
timator of p = (p11,-+ - ,p1x)'and the corresponding log-likelihood by (4, ). Then
following the procedure discussed in chapter 2, the confidence interval using the

likelihood procedure is obtained by solving

2 [4,5) - U, 5)] < xaoay(D)-

From chapter 3, the maximized log-likelihood I(3, p), using the parametrization of
~ and py, is
K - - -
I1=C+ Z (Tkﬁk + (N2r — Xar)y — Niklog(l + e*) — Narlog(e™ + e )) .

k=1

We still need to find I(4,p). Again from section 3.2, we have

K
P1k Pik Pq1x
(¥,p)=C Xilog(—) + Nyl . 4 Xopl —+N.10—-—).
(¥,p) +k§=1:( 1k 09(q1k) 1logqx + Xk 09—+ Nalog == —

For a given 1, the maximum likelithood estimator for pyg, k = 1,-++ , K is obtained

by solving 2 = 0. Now, the partial derivative of I with respect to pyx is
€ pir

oL _ Xue (N —Xui) N Xok  (Nak - Xor) _ (Nar)(1 =)

Opax B D1k qQ1k "k q1k Paix + D1k
- Xue + Xor  (Nie + Nog — X — Xor) Nar(1— %) —0
P1k quk Pk + P1k

From this and using the reparametrization of p, = log(fp*;) and v = logy we

obtain

p3+e) (Ne—T)A+e?) Nu(l+e)il-em) o
k ePr - 1 - eY 4 ek -

26
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which can be written as

..4ka: + B X +Cr =0

where
By = —Ti(1 + €7) + Nyge” + Nag,
Ay = (N —T),
Cr = —Tre?
and
X = ePx,

Now, p11€(0,1), pre{—00,00) and e”*¢(0, o). The solution of the quadratic equation

is

- . 2 -_ 3 8
x, o ZBrt VBT 44Ty

24,
We have to show that, it has two real roots and only one root is admissible. That is,
only one solution is in the range (0,00). Now A; = N — T} is positive, ~Cj = Tie”

is positive therefore, —Ax Cy is positive.
~ACr >0=> Bf. - 44, C > 0. (4.6)
Therefore, the quadratic equation has two real roots. Now,

—4A4;Cr > 0= B2 —44,C) > B2,

\/B% - 4AkC’k > By (4.7)

From this it is clear that —By ++/B% —4AxCr > 0 and —B; —1/33 —4A,C;
< 0. Therefore, we have only one admissible solution. Using this, the maximum

likelihood estimate of e?* for a given €7 is

Pt = —By + \/BZ —4A;C
- 245

(4.8)

27
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Putting this in I(-y, p) we obtain

K
(v,)=C+ Z (Tkﬁk + (Nop — Xor )y — Narlog(l + ei”‘) — Noilog(e™ + ef* )) .

k=1
From section 2.2, an approximate 100(1 — )% confidence interval for - is obtained

by solving

LR =2(l(%.5) = U(7,P)) < xi-a(1)
The above equation can be solved by using IMSL subroutine ZREAL. Denote the

lower limit and upper limit of 4 obtained by the likelihood procedure by 2.z and

FLuwv- The corresponding lower limit and upper limit of the odds ratio are
'),;LuL = eiLut
and
Prou = €5,
4.2.3 Procedure based on adjusted likelihood ratio
In this approach (unconditional), « is a scalar parameter and p = (py,-+ ,px)

is the vector of nuisance parameters. As discussed in chapter 2, according to the

procedure developed by Diciccio, Field and Fraser (1990), the pivotal statistics are

P;.-=M, k=1,--- K

L4
and

Ppyy =log=
Thus,

pr = pr.+ Prip
and

Y =79+ Prsa-

28
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From chapter 3, the log-likelihood can be written as
K
1=C+ > (Tipr + (N — Xai)y — Naplog(l + €”) = Naglog(e + e?*)).

k=1

Therefore, in terms of the pivotals, the log-likelihood is

I
UP)=C+ Y (Tu(bs + Pid) + (Nok — Xau)(d + Prear)) =

k=1

K ‘ ) i
Z (Nu.log(l + ePrtP w) + Ngklog(e:""l”"“ + ei)u+Pkw)) (4.9)
k=1

Hence,
K - -
(0)=C+ Z (Tupr + (Nar — Xar)¥ — Niilog(l + %) — Nayilog(e™ + e*)) .
k=1

Now, we need to find [(P(Pg41)). From equation (4.9) we obtain

_Ql_— —Tq‘z lecﬁk+PkJJ(1)[;) Nzkeﬁk+Pk'2’(1,;) _
9P -k 1+ ei’k‘l"Pk’i’) e¥+FPr+1 4 ePetPrip -

_ leeﬁk-*-Pkw _ Nzkeﬁk-i-PuP _
1+ ef’k'f'Pk'l’) e¥+Pr41 4 eputPi¥

Tk
= Tk(l + ef’k+PkJJ)(e“l+Pl\'+1 + eﬁk+Pk‘2’) _ leeﬁk'kpkli!(e?'*'f’h'-u + eﬁrl-Pn 11’)
_NZkef)k-!-Pk'fJ(l + ci)k+PuE’) =0 (4.10)

Let X\ = e¥Pc Then equation (4.10) can be written as
Ak.Xf +Bi Xy +Cr=0

where

Ay = (N — Ty)e??*,

B, =-— (Tk(l + e*‘r+Px+:) - lee‘r-i-me - Nzk) aPr

29
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and

Cr = _ch‘r'*‘Px«l-x .

Now, using the same argument as in the derivation in section 4.2.1, we have the

values for Py (k =1,---, K) that maximize I(P) for a given value of Pr4; as

- =B + +/B? —44,C;
Pk=i}:log( Br + /B —44;Cx '

24,

Substituting this value in equation (4.9), we obtain the maximized log-likelihood

for a given value of Pp-4, as

K

UP(Prsa)) = C+ 3 (Telbr + Bd) + (Nar — Xar)(F + Prcan)) —
k=1
K o L
Z (lelog(l + ein:-i-Pmb) + Ngklog(e;"*'P“*‘ + eﬁk+Pk¢)) (4.11)
k=1

Therefore, the likelihood ratio statistic for the pivotal Pgy; is

LRK+1 =2 [1(0) - Z(P(PI\’+1))]

K
=23 (-Tkpk?Z’) + (Nagg sz)(—PK+1))
k=1

K ; : .
-2 E (lelog—-——_-T <+ NzklOg P P -) .
o 1 4 epetFud e¥tPr41 4 epetFid

From chapter 2, the signed root statistic is

SRy41=—VLRry, if 7<¥%
and

SRyrs1 =+ LIRKk4w1, if v>9.
From equation (4.9), we have

Sl P) - Tk'l/; _ le-gl:epk\f’-!'i)k _ Nzkef""*'P"'I’(?[;)
OP;

14 epetPed  g¥+Pr41 4 ehr+Ped

30
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and

ol(P K NoevtPen
( ) _Z(NQL"A”")"Z 2k €

OPr 41 eVHPR41 4 ehntPid”

k=1 k=1
Hence, . 4
621(P) le-,z,'-’cm-*-l’kw Ngkcﬁk'f-f’k*l'e‘}-{'-l’x.}-x (.J,'.’.)
P T (1 + epetPedy2 (e¥FPrt1 + ehethad )2
O*l(P) Noppe T Pr+1chu+Padh
3PkaPK+1 - (e"7+PI\'+l + ehx +Pk¢.' )2
and
azl(P) N.,m[:e'Y'*‘PhMeﬁk'*‘Pk ¥
_6]3}"\-_*_1 (c’7°+'PA+x + ehtret)2

Therefore, 21 ‘“” for a given Po =0, k=1,--- ,K +1is

&*l0) _ Nudp?eft  NorePre¥(42)
T 9P T (14 ehx)2 T (e¥ fepr)?

_ QA0) N—,‘e'feﬂk(.ll)) _,

8PL.BPK+1 - (e'r + etk )_ k

= a

and

G0} Z Naevebr (11))
" OPgyy (7 +eir )2

The information matrix I can be writien as

Ill IIZ
I= Lfn Inp |y I} =|Inlllez = L1 I3 1]

where I;; is a diagonal matrix with kth diagonal element a;, I3 is a K x 1 matrix
with kth element bk, I12 = Iz1 and I22= d is a scalar.

Therefore, the determinant of the information matrix I (given Py = 0 and Pg 4y =

0) is - (E ak) ( Z (123 )

b==1

31
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and the determinant of the submatrix I*for given Py (k=1,--- ,K) is
. o? lP(PA-H)
\"l= (H T epz ¢

ﬁ le?;2 ePr +Pe ¥ Nzke[u--*'}.’k !.;}8‘1+PK+11£2
(1 + em:-*-ka)Z (e’7+PK+1 + eék+f’h‘5)2

From the equation (4.9), we have,

- Ol P
L (B(Prs)) = ap(rjl

e¥+tPrs1 4 ePrtPets -

M’*

((Nz& — Xox) —

P‘.:Pk k=1

Following the procedure in section 2.3, the marginal tail probability for the pivotal

Ppr4 can be written as

1 I|2
Pr(Pr+1 S pr+1) = ®(SRr41) + $(SRr41) (SRK+1 + ] (P(PI | )II'll)
1 K+1 2

Hence, the 100(1 — a)% approximate lower and upper confidence limits can be

obtained by solving

e

1 1] _
SRer1  L(P(Prn))lI*[3) 2

IR

®(SRx41) + ¢(SRr+1) (

and

| _ 1 M —1-2
S(SRk+1) + (SR +1) (SRI{-H * II(P(PK-H))II'[%) B

respectively. Denote these as Py and Py. Therefore, the corresponding lower and
upper limits of v using Diciccio’s procedure are 9e* and 4ef? respectively. Then
the estimators for the lower and the upper limits of the confidence interval for %
are

. P

¢D vl — e’

32
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and

- P
Ypur = €7

4.2.4 Bartlett’s procedure based on the likelihood score
In this approach, we are interested to comstruct confidence interval for the pa-
rameter %, in the presence of nuisance parameters ¢ = (p11,--.,p1&°)'. From section

2.3 (chapter 2), Bartlett’s alternative to the maximum likelihood estimate ¥,

31 ol
T(”t{)) IL’«'é o¢ aé)

with variance I, o, has asymptotically normal distribution. As reviewed in section

2.3, the 100(1 — a)% confidence interval for 3 is obtained by solving

where Zg is an approximate quantile of a standard normal distribution. From the
unconditional log-likelihood discussed in chapter 3, the partial derivative of I with
respect to ¥ is

M SN =Nowqux & (Nae — Xai)
— = 2k N T2k T k)
oY Lz=:1 Pk + Prx Z P

The second partial derivative of [ with respect to ¥ is

_ Nugl N\ (Now — Xax)
31/’2 z (71”111. + p1x)? ; P2 )

k=1

Furthermore,
E(Xa1) = Noypar.-

Therefore,

2] N Nopg? E N
) - _ Z 2k . + E 21:;121:_
r—1 (Ya1r + prx) m1 P
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Reparametrization of the above equation in terms of «v and px leads to

Nzkeph

“Hop) = L o v

But from1 Fisher information matrix

d%
Iyy = —E(%;)-

Therefore,

Z (epN 2™ _ S(say). (4.12)

k- e"l')2 Y

Furthermore, reparametrization of 5 in terms of p; and 7 gives

Napefr — ng(e”-i—e“)
a ¢ Z (4.13)

e?(e” + efr)

From the unconditional log-likelihood in chapter 3, we have

I (Xne+Xow)  (Nix+ Now — Xor = Xux)  Now(l-—9)

o P1k q1k Pqk + pik
But
¢ = (Pu, ---st‘)'-
Therefore,
9%l
_— =0, |
Op110py 1 #

Further, when k=& '

8 _  Xue+Xox  Nok + Nux — Xag — Xok + Nok(1—9)?
pi Pix % (Y1 + p1&)?

and

Nyepir + Naxpar | Nowgar + Naggie  Now(1—9)?
E( 2 ) - 2 + 2 - 2"
ap Y288 9k ("1’91& +p1k)
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Using the reparametrization py; = we have

_efx
1+efk?

5l Nu(l4e?)? | Nop(l+em)?

_E( 3p§k) = ePx ePx (e’ + ePx )2
and
9%l
—-F(————) =0.
( Op1xp1ke )

Therefore, the matrix Iy is diagonal, and is given by

232 0 -+ O

Isp =

0 0 - gk

where
. Nu(1+ e” ) Nop(1+eft)le?
Sk = ePE erk(ePr 4 e1)2 °
Now, from % , we have
3l Na(l — ¥l Noy

Op11:.0Y B (Pqik + p1x)? Yk +pik

_ Nor(qir — Yaur +Pa1x + pr&)
(Ya1x + p1x)? ’

_ Nog
(Yq1x + par)?

o . Pi
By reparametrization of p1x = 1557, we have

&4l _ Nop(1 + e )2
Op110Y - (67 + ePk )2

But from Fisher information matrix,
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a..

Touw = — EX 560 ¢)
Therefore,
1 \
Ijw=| :
rxc)
with kth row element r;, where
, _Ngk(l +e”")2
k (e +erx)? :

Similarly,
Ipe =(r1 --'7Tx).

As mentioned in chapter 2, we have

Ipws = Tvy = Ipelng Loy

But from the above derivations, Iyely; 1I4y is a scalar. Therefore,

Nue”" TE_
- -_ 4.14
Typ.e = Z < (ePr +e7)2e ; irk (414)
Reparametrization of 5= in terms of v and p; gives

Ol  Ti(1+e)
Bpue ek

Nop(1l + e*)(1 — e7)
(e’? + epk)

— (Nre = Ti)(1 + ™) —

Therefore, (&L ) is a K x 1 matrix and given by

U

(5=

UK
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with kth row element u;, which is equal to 881 From the above discussions,
I¢¢I¢¢( L)' is a scalar and is given by
5l K
de,I;; 3¢) Zrk"‘k(ikk)_l (4.15)
k=1

From equations (4.13), (4.14) and (4.15) the lower limit and the upper limit of v

are obtained by solving

T()
Tyyp.e

=+Zs (4.16)

H

that is by solving )
St ((Dx — maraling) %)

< = +Z7s,
where
1y
_ Ngke”“ —_ Xek(e“! 4 ePb)
Dk - Z 37(67 -+ el’k) ’
k=1
_ Nagp(l+em)?
(e'7 <+ efk )2 '
_ Tu(l+e™) v Nau(L 4 eP)(1 = €7)
= o — (N = Th)(1 + e) -~ o)
_ le(l + ef* )2 Ngk(l + et )467
- ek epk(epk o+ e‘()z ?
and

K N, et
§= z (em 4+ e7)2er’
Note that the left hand side of the equation (4.16) involves e®*, which can be

replaced from (4.8), by,

v =Bu+ VEIZIAG,

24

where

Ap = (N - T),
B, = -Ti(1 +€7) + Nire” + Noy,
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and

Cr=—Tre".
Denote the lower limit and the upper imit of 7y obtained by Bartlett’s procedure
by 4Bucz and ¥Bucv. The correéponding lower imit and upper limit of the odds
ratio are

ll;BucL = C;YBuCL

P Bucy = €784V

4.2.5 Bartlett’s procedure corrected for Bias and Skewness
In this procedure the nuisance parameters ¢ = (p11,--+ ,p1x7) In T(¥) are re-

placed by their corresponding maximum likelihood estimates ¢ = (p11,++- ,P1x)-

=1
2

This involves a bias of order n T . As reviewed in chapter 2, bias in T(%) is given

by
] 1 1 3% 931,,,4,))
Bias(Ty) = —§trace (IM (E( a¢a¢6¢T) +2 5
1 -1
+§trace (I¢¢ M)
where M is the K x K array (M:,Ma,.....Mg) with j th column given by
= 2 I
MJ (E(6¢J8¢8¢T)+ a(bJ Id’ﬂ’

For convenience, we consider
Bias(T,;,) = By + By,

where

R 3l 591y
By = —5trace ( (E(W8¢3¢T) +2 0é ))
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and

1
Bg = +3trace (I;;M) .

Now, let
Pl
dpudpir
Then
n o - 0
&1 0 72 --- O
9p0$T :
0 0 - Jr
with kth diagonal element <~ p - and
t 0 -+ 0
031 0 tz b 0
Blprrr) =
9o
0 0 --- i
with kth row diagonal element E( m) = t;. From section 4.2.3 (chapter
4), we have
Z Nokqui (Nzk - Xar)
Phk t ok 4
Hence
ol Noj
10y (Pauk + p1x)?
and

| _ _2Nx(1-9)
Op11x0p11:.0¢ (g + p1i)®’
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By the parametrization of pyx = 1r¢sr» We have

&l INap(1 — e?)(1 + ePx)?
. y=-_= 4.17
B paBmii09 @ en) (410
That is
; _ 2N (1 - e 1+ ef*)?
k= (e7 + emr)? .
From section 4.2.3, we have
Iwé - ( E( auap“ ) T E\awaplfk))
and
o*l Nog
-F(—m—) == —————.
(5p1k3¢) ($arr + p1x)?
Hence
9 gLl ) o 2uld-y)
Op1k Op110¢ (Yaak + p1x )
By the parameterization of p1p = 7 +c,£ , we have
d 9%l ONar(1 — €)1 +e?*)®
-E = . 4.18
Bore 2 Opindp) @+ ey (419)
Therefore,
L 0 -~ 0
0lps 0 L --- 0
o :

0 0 - g
with kth diagonal element I;., where

O (1 — eM)(1 4+ et
B (€7 +em)3 )

"’w is a K x K matrix with

. ’ 3
Therefore, from the above discussions E( 8pug p’n 55)+2
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diagonal element #; + 2{;. Also the diagonal element of the matrix I;; is (fxx) %

Therefore,

1SN (t + 20)
By=-3 Y k.

(4.19)
k=1 tkk

Now, the jth array element of the matrix M is

&1 8o\ s
;= 2 .
M; (E(a¢,~a¢a¢T)+ a¢j)1¢¢1¢¢

We have shown that
j1 0 -~ 0

821 0 75 --- 0
W =1 . ) .
0 0 - Jr
Therefore, '
0 0 --- 0
a:’.l 0 S$p v 0
8561007
0 0 0
where
50— 83l
¢ apik .

From section 4.2.3, we have

iR - _(Xlk + Xo) _ (Nix + Nag — X — Xox)

apfk B Pik qfk
Now(1 - 9)?
(Ya1r + 111)?
Hence
&l - 2A Xk + Xor)  2(Nig + Nog — Xp — Xo)
Opi P1x3 R
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Now(1 — 9)*(=2)
(¥ar + p12)?

Therefore,

B &l ) = 2Nu(que — pax) | 2Nay
aP;.-‘k P?k‘lfk ' P?k('l’mk + p1x)
2Nz21(%) 2N2i(1 — 9)°

T @ar o) Bk + )

By using the reparametrization of p;, gix and 9, we have

8’1 _ 2N (1 — e )(1 + ep")s 2Nar{(1 + eP* )3

E( 3??;.- ) - (eﬁx.- )2 (eﬂk )2(67 + epk)

2Nai(1+ e”)Pe?  2Nyi(l = e )3(1 + e?+)® ,
- _ .

(e + ePv) (€ +e7) (4.20)

Let R.H.S of the above equation is equal to s;.

We have already shown that Iy is a diagonal matrix with diagonal element ;.

Therefore,
¢ 0 --- 0O
0L, 0 v -+ O
Odi :
0 0 -~ 0
where
7] 8%l

vy = - .
¢ Op1k 61’?;:)

From section 4.2.4, we have

—E( &%l )= Nukpue + Napaw | Nowgos + Nuwgue Nox(1 —9)?
9p3,, Pix a5 (Yarx + p1x)?

Hence, using the reparametrization of pi1, g1 and 3, we have

AL = Nax(e — 1)1 +ef ) Ny (e7(eP* = 1) — 2e#) (1 + )
Opuc Op} (e™)? (erPe)2(eY + erx )2
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NoreV (e —1+2e?) (1 +e”)®  2Na(l—-e")*(1 +e”)

+ (e'r + e )’-‘ (c“’ + Pk )3

= v (4.21)

Let the R.H.S of the above equation is equal to v; But, kth array elecment of M is

aal aIéé —1
= (Bl g + 2552 ) T

Therefore,

\o
with my = (81 + 2v3)(rx)(@kk) "}, Therefore, M is a KxK matrix with diagonal

element m;. Hence,

myiy 0 .. 0
0 maig - 0
-1 _
Tog M =
0 0 . myigy

Therefore,

K
1 (sk + 20 )(re)
B }: . (4.22)

(Frr)?

From equations (4.19) and (4.22), we can find the bias in terms of v and p;. That

k=

is

Bias(Ty) = By + By = —= Z (m; + 91&) z (s -i(-j:)kz)(rk)

Bartlett’s correction for Skewness
As reviewed in chapter 2, the third cumulant of Ty to the order O(n:aha) is
obtained for s,f,¢q =1,--- , K is given by

Ko(9) = 2B(50) + 955"

el
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K
B EY arw)
_ 9 .
3§;f“(2E(a¢2a¢,’+ o * o6,

&l Ols,6,  Olys, , Olye,
DN (2E(a¢a¢,a¢,)+ 9% T 0p. 6¢:)

i 0ls,¢g | 0ls,¢q 3I¢.¢t)
_;Z;f‘f’fq(mama@a%” 56 T 24 T 0dy

From section 4.2.4, we have

8%l Naxad, B (Nak — Xoz)
p? Z ¢ ($au + P ,; .

Hence
8% —9N2Lq1k€hk & 2(Ngy, — Xax)
a9 Z ‘ (ar + pui) ?‘1 P*
and
Fiad! X _—2Nagyy 9N2L‘12k
E = . 4.23
(51/)3) Z (b -Hm)3 Z (+.23)

Also from section 4.2.4, we l1a.ve

Z Nz&qu Z Noigor
(1/"11L + p1x)? P2

k=1

Therefore,

K R
Olyy 2Narg3,, Nowgy (1 + 29 Q1)

—_— - . 4.24
En Z (¢(Ilk + pi)? LZ=1 P2(p1k + Y1) (4.24)

From equations (4.23) and (4.24), we have

81, 0y

2B(555)+ 55y
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K

2N2i gk Narain(pak — 2¢q11)
. 4.25
Z * (Pak +P1L)3 z P2 (Yqx + p1x)? (4.25)

Let the R.H.S of the above equation be A. From chapter 2 review, f = IW,I;;, we

have the sth element
(r)

Laa

fo=

E(a—‘;?%‘: is a K X 1 matrix and it’s sth element can be determined as follows:
i ) ( &l
Y2p1s I \B9Ip1a

- 55 (o o)
T O \(Da1a + P14 )2

= —QNZSQIa
(¥q1s + p1s)?

E( 832 ) - “2N2:¢‘I13
6’!/)23}713 B (1[}‘113 +p1n)3 |
8Iys

B is a K x 1 matrix and it’s sth element can be determined as follows:

6I¢¢, _i( —st )
O P \(Para+pra)?

_ 2N2sq1.s
(¢Q1a - Pls)3

from the above equations, we have

3
&%l )+ 23[,,,4,,
0209, oL
Tvv jsa K x 1

From section 4.2.4, I,y is known and it is a scalar. Therefore, 00 5.

2E( =0.

matrix. It’s sth element is

Olyy _ 5 i —N,,q2, + Ii Noypar,
Opis  Opis (Pa1s + P14)? P2 (Pq1a + P1s)

s=1 =1
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Hence,
0IUL‘ _ ?'Jv".’nqla _ Jvza
aan (ﬁ)QI: + Pla)3 d’(“r{)QIJ + pla)z

By reparametrization of p;, ¢, and ¥, we have

81.,.,& _ 2Ng.(1—:-e‘°' )2 Ng,(l-}-ep’)z
p1,  (eT+er P e¥(e¥ + et )’

(4.26)

Let the R.H.S of the above equation be g,. Therefore,

R K
ol E)I,,,o 6[;,.,) (Ta)(ga)
9 29 $ — —_———
2.7 (2B + 2555 + 5 2

=22 (1—€" )1 +e’5)
(e7+efe)>

But from equation (4.17). the kth element of the matnx E{ 4 88:"8 5-)is
when s = ¢t = k and zero otherwise. We have already shown that the above value is

. From equation {4.18). the kth element of the matrix %‘- is

2

_ 2N (1 — e )(1 4 e )’

(e + e?x )3

when s = t = X, otherwise zero and we have already shown that this value is equal
to Ii.

a1 “ .
Now, we need to calculate —52%-. When s =t =k, it is

& I

H

Pixr  Pig a3, (Pq1x + P1x)?

_ Now(pre — q1z) 2N2i(1 - )
Puqi(Pair + pix)?  (q1e +p1e)®

an.o. ﬁ_ ( Ny N Narpar -+ Norgox _ Nzk(l _¢)2 )

By reparametrization of p;;. ¢11 and 3, we have

31},,0‘ _ N-_»L.(e"" - 1)(1 + efx )3 )
oy efr(e¥ +ev)? -

ONoi (1 — e7)(1 + e?*)3
(eY + esx )3

(4.27)
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when s = ¢ = k. otherwise zero. Let the R.H.S of the above equation be e;
from eq 4.24 we have

&>l 29w _
s

2E(

and from equation (4.26). we have

L oPve, | Olyu _
‘3Zf’(“ 0v°0¢,) 2 T a¢.)‘

Z (TL (gL)
e=1

From equation (4.27). we have

N 0lo,o, . Oyo, . Oy,
322“‘(‘ o4, aét) o 0. a¢,)

[\/]>~
=3
[X)

—) (ex).

k=1

From equation (4.20) and from equation (4.21), we have

~ &l oL, ¢, 0l,.4,  Ol, o,
Zzzf‘f’f"(‘mamaw) 296, T o6 T a«m)

= "Z(—_) {251 + 3vr)

Thus.

Ks($) = A- 32(")“" +3Z("‘ P(e )—Z(~)3(28k+3v&)

k=1 k=1
The lower and upper confidence limits of 4 are obtained by solving

T B(T,) Ks(¥)(2% -1)
\/Iww.o Viev.o 6(1ve.0)

=122 (4.28)
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Note that the left hand side of the equation (4.28) involves e?*, which can be

replaced from (4.8}, by,

oPr — -Bi+ \/Bf. —44A;C

245
where
Ap = (N = T},
By = —Ti(1 + €¥) + Nyge? + Nox,
and

Ciy = —Tre.

Denote the lower limit and the upper limit of v obtained by Bartlett’s corrected
procedure by ¥cucer and ¥zcucy. The corresponding lower limit and upper Limit

of the odds ratio are

"I’BCncL — e'YBCucL

and

d’BCucU = e?BCucU .
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CHAPTER 5

SIMULATION STUDIES

In this chapter, the performance of the likelihood based procedures except the
adjusted likelihood procedure based on the unconditional likelihood derived in chap-
ter 4. are examined through simulations. The adjusted likelihood based procedure
based on the unconditional likelihood is showing some convergence problems that
could not be resolved by the author. IMSL random number generator RNBIN was
used to generate binomial variables. The range of values for the parameters K, Ny,
Ny, % and p;; used in the simulation studies were chosen to be representative of sit-
uations which arise in epidemiologic practice. In the simulation study, for each of the
K =5, 10 strata, the sample sizes chosen were (N1z,Nai) = (5,5), (10,10), (20,20),
(5,20). The values of probabilities pi; chosen were pyix = 0.05 + 0.04k(%) [Robins,
Breslow and Greenland (1986)] and the values of ¥ chosen were ¥=1, 3.5 and 6.5.
For all the likelihood procedures and for each combination of K, (Nyk, Nok), p1
and 9, we produced the tail and the coverage probabilities and the average lengths
based on 1000 samples. The validity of the confidence interval is determined by the
probability that the random interval covers the parameter value. This probability
is called coverage probability. We have use 95% nominal confidence coefficient. The
tail probabilities are the probabilities that the parameter value lies outside the ran-
dom interval. Using the conventional rule, we added 0.5 to each observed frequency
in any simulated table where a zero observed frequency occured. Tables 5.1a and
5.1b list the lower and upper tail probabilities, coverage probabilities and average
length of the confidence intervals for the common odds ratio using the conditional

likelihood. Tables 5.2a and 5.2b list the lower and upper tail probabilities, coverage
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probabilities and average length of the confidence intervals for the common odds

ratio using the unconditional likelihood.

Results: The ML method (Procedure based on maximum likelihood estimate)
provides adequate coverage { p > 0.9, where p is estimated coverage probability)
for = 1.0 and unacceptable coverage for other values of % for both conditional
and unconditional likelihoods. The LR method (Procedure based on likelihood
ratio ) provides excellent coverage for ¢ = 1.0,3.5 and 6.5 for all designs used for
conditional likelihood except for the design Ny = Ny = 5, K = 10 and ¢ =
6.5. The LR method based on the unconditional likelihood also provides excellent
coverage for all designs used. The methods B and BC (Bartlett and Bartlett’s
corrected) provide excellent coverage for ¢v=1.0, 3.5 and 6.5 for all designs used for
both conditional and unconditional likelihood except for the design Nyix = Nox =5
,K = 10 and ¥ = 6.5 for conditional likelihood. The SQ method (Signed square
root of the likelihood ratio) provides excellent coverage (p 20.94) for ¥ = 1,3.5 and
6.5 for the design Ny; = Ny = 20 and K = 5 and also for 1 = 3.5 and 6.5 for the
design Ny = Nop = 10 and K = 10. For all other designs the coverage dropped
below 94% for conditional likelihood. The SQ method provides excellent coverzge
for the unconditional likelihood for all the designs used. From Tables 5.1a and
5.1b, we note that the likelihood ratio intervals provide the upper tail probabilities
which are larger than those of the lower tail probabilities for many of the designs
used for conditional likelihood. The SQ method gives higher values for lower tail
probabilities than LR method for all designs used for conditional likelihood and
most of the designs used for unconditional likelithood. For Nz = Nz = 20 and
K =5, the methods LR, B, BC and SQ performed equally well in terms of coverage
and tail probabilities for conditional likelihood. But for the same design, when

¥ = 6.5 these methods provide excecllent upper tail probabilities and an adequate
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Iower tail probabilities. For Ny = Nap = 10 and K = 5, the methods B and
BC performed well in terms of tail and coverage probabilities when 3 = 1.0, for
conditional likelihood. For Nj; = Naj = 20 and K = 10, the SQ method performed
well in terms of tail and coverage probabilities, when 3 = 1.0 and 3.5 for conditional
likelihood. For Njj = Naj = 10 and K = 10, the mcthods B and BC performed well
in terms of tail and coverage probabilities when 3 = 1.0 for conditional likelihood.
For unconditional likelihood the SQ method (Signed square root of likelihood ratio)
performed well in terms of coverage and tail probabilities when K = § for all the
designs used. For Ny, = Nop = 20 and K = 10, the mecthods B and SQ performed
equally well in terms of tail and coverage probabilities for unconditional likelihood.
For Nj; = N = 10 and K = 10, the methods LR, B, BC and SQ performed well in
terms of tail and coverage probabilities when ¥ = 1.0 for unconditional likelihood.
But for other values of 9 the methods LR, B, and SQ provide excellent upper tail
probabilities and unacceptable lower tail probabilities. For the design Ny = 5 and
Nar = 20 and K = 5, the methods LR, B, and BC performed well in terms of tail

and coverage probabilities for ¢ = 1 and 3.5.

In summary, for conditional likelihood, in terms of coverage probabilities, the
methods LR, B and BC provide excellent coverage for all the designs used. But
in terms of tail probabilities Bartlett’s method perfomed slightly better than other
method. For unconditional likelihood, in terms of coverage probabilities, the meth-
ods LR, B, BC and SQ provide excellent coverage for all the designs used. But
in terms of tail probabilities, the methods B and SQ peformed well. However, in
terms of average length the method B gave the shortest average length. For the
Bartlett method, the unconditional likelihood gave the coverage probability closed
to 0.95 and the tail probabilities closed to 0.25 for most of the designs used. Based

on the results of these likelihood based procedures, the Bartletts method B with
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unconditional likelihood scems to be most suitable for constructing confidence lim-
its for common odds ratio, atleast for the kinds of designs that have been used in
the simulations study in this thesis. However, most of these procedures fall short of
producing adequate coverage probability when K (> 25) increases and the sample
sizes (< §) in each tables are small. The likelihood procedure corrected for appro-
priate tails in small samples developed following Deciccio, Field and Fraser (1990)

1s expected to perform well in these situations.
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Table 5.la: Lower and upper tail probabilities, coverage

probabilities and average lengths of the confidence intervals for

the common odds ratio using the conditional likelihood.

Pi1x = 0.05+0.04k (20/K}, K=5, alpha=0.05

Nqyx | Npy | Psi | Method | Lowerx Coverage Upper Length
20 20 1 1.0 ML 7.3 92.7 0.0 1.3
LR 2.5 85.1 2.4 1.4

B 2.6 85.0 2.4 1.0

BC 2.6 95.0 2.4 1.4

S0 2.6 94.3 3.1 1.4

DA 3.8 93.7 2.5 1.4

3.5 ML 28.5 46.3 39.5 1.3

LR 2.3 95.6 2.0 5.7

B 1.8 96.2 2.8 5.5

BC 2.0 96.0 2.1 5.7

SQ 2.7 83.8 3.5 5.4

DA 3.8 94.2 2.0 5.0

6.5 ML 36.5 24.0 39.5 1.5

LR 1.4 96.0 2.0 12.0

B 1.3 95.8 2.8 11.4

BC 1.5 96.4 2.1 12.0

SQ 1.2 895.8 3.0 12.6

DA 3.7 %4.3 2.0 12.3

10 10 | 1.0 ML 8.7 91.3 ¢.0 1.8
LR 1.4 96.4 2.4 2.2

B 2.1 85.7 2.2 2.2

BC 2.1 85.7 2.2 2.3

SQ 2.2 83.6 4.2 2.2

DA 5.8 80.0 4.2 2.2

3.5 ML 26.8 47.3 25.9 1.9

LR 0.9 97.0 2.1 8.9
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Nip | Nop | Psi | Method | Lower Coverage Upper Length
B 1.0 96.4 2.6 8.3

BC 1.3 96.4 2.3 9.0

SQ 1.3 96.0 2.7 9.0

DA 10.5 86.9 2.7 8.7

6.5 ML 29.4 24.9 45.7 2.0
LR 0.2 96.4 3.4 17.1

B 0.6 95.5 3.9 15.8

BC 0.9 85.5 3.6 17.0

SQ 1.0 95.3 3.7 18.1

Da 6.7 8§9.1 3.7 17.5

S 5 1.0 ML 0.0 81.9 45.7 2.0
LR 2.0 97.9 0.1 3.9

B 2.3 96.1 1.6 3.4

BC 2.3 86.1 1.6 3.7

SQ 2.5 91.3 6.1 3.4

DA 3.4 91.9 4.7 3.5

3.5 ML 0.0 87.2 12.3 8.5
LR 0.2 99.5 0.3 12.7

B 0.1 95.7 4.2 10.4

BC 0.2 96.2 3.5 12.2

SQ 0.3 83.4 6.2 11.7

DA 1.2 93.1 5.7 12.9

6.5 | ML 0.0 81.5 18.4 | 13.6
LR 0.0 99.6 0.4 22.5

B 0.0 94.0 6.0 16.9

BC 0.0 94.9 5.1 20.6

SQ 0.0 83.2 6.8 20.2

DA 1.9 91.8 6.3 23.1

5! 20 |1.0 ML 0.0 92.7 7.3 2.2
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Nix | Noy | Psi | Method | Lower Coverage Upper Length
LR 2.5 897.2 0.3 2.8

B 2.4 95.7 1.9 2.7

BC 2.4 95.7 1.9 2.7

SQ 2.6 90.2 7.2 2.1

DA 4.0 90.1 5.9 2.4

3.5 ML 0.0 91.5 8.5 8.1
LR 1.3 97.3 1.4 10.0

B 1.3 96.0 2.7 9.3

BC 1.4 96.1 2.5 11.1

sQ 2.6 90.5 6.8 15.1

DA 3.5 91.2 5.3 9.5

6.5 ML 0.0 90.4 9.5 15.1
LR 0.4 97.3 2.3 19.3

B 1.1 95.5 3.4 17.6

BC 1.3 95.8 2.9 19.6

SQ 1.5 92.3 6.2 17.4

DA 2.9 82.5 4.6 19.4
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Table 5.1b: Lower and upper tail probabilities, coverage

probabilities and average lengths of the confidence intervals for

the common odds ratic using the conditional likelihcod.

Py = 0.05+0.04k (20/K), K=10, alpha=0.05

Niy [ Noy | Psi | Method | Lower Coverage Upper Length
20| 20 | 1.0 ML 5.2 84.5 0.3 0.9
LR 1.6 96.0 2.4 0.9

B 1.7 95.8 2.4 0.9

BC 1.7 85.9 2.4 0.9

SQ 2.2 895.4 2.4 g.8

DA 7.8 81.0 11.2 0.8

3.5 ML 20.1 42.5 28.4 1.0

LR 1.7 95.8 2.5 3.7

B 1.8 85.5 2.6 3.6

BC 1.9 85.6 2.5 3.7

SQ 1.9 85.6 2.6 3.6

DA 6.2 91.3 2.5 3.4

6.5 ML 33.7 23.9 42 .4 1.1

LR 1.2 96.6 2.2 7.5

B 1.1 96.3 2.6 7.4

BC 1.1 %96.4 2.5 7.4

SQ 1.4 896.4 2.2 7.5

DA 4.7 92.4 2.9 7.9

10| 10 | 1.0 ML 6.1 93.8% 0.0 1.2
LR 2.4 895.0 2.6 1.4

B 2.3 85.1 2.6 1.4

BC 2.3 85.1 2.6 1.4

SQ 2.8 82.0 5.2 1.3

DA 5.8 83.5 4.2 1.1

3.5 ML 23.0 44 .7 32.3 1.3

LR 0.7 896.1 3.2 5.2
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Nqj | Noy { Psi | Method | Lower Coverage Upper Length
B 0.7 96.1 3.2 5.0

BC 0.7 96.1 3.2 5.2

SQ 0.8 95.3 3.9 5.9

DA 10.1 86.0 3.9 4.0

6.5 ML 23.8 23.5 52.7 1.4
LR 0.3 95.5 4.2 10.0

B 0.2 94.9 4.9 9.6

BC 0.8 95.2 4.5 10.0

SQ 0.3 94.7 5.0 9.8

DA 8.6 87.0 4.4 9.8

5 5 1.0 ML 0.0 93.5 6.5 1.8
LR 1.2 97.3 1.5 2.1

B 1.2 97.3 1.5 1.9

BC 1.2 87.3 1.5 1.9

SQ 3.2 84.7 12.1 1.5

DA 5.6 87.8 6.6 1.7

3.5 ML 0.0 86.3 13.7 5.4
LR 0.9 96.6 3.3 6.5

B 0.1 95.3 4.6 6.0

BC 0.2 96.2 3.6 6.4

SQ 0.3 89.4 10.3 5.6

DA 0.8 90.9 8.3 5.9

6.5 ML 0.0 74.6 25.4 8.5
LR 0.0 92.1 7.9 10.4

B 0.0 90.3 9.6 9.6

BC 0.0 91.4 8.3 10.5

SQ 0.0 86.1 13.9 9.5

DA 1.2 87.3 11.5 9.9

5| 20]1.0 ML 0.0 95.5 5.0 1.5
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Ny, | Nop, | Psi | Method | Lower Coverage Upper Length

LR 1.8 96.4 1.0 1.6

B 2.0 96.3 1.7 1.6

BC 2.0 96.3 1.7 1.6

SQ 8.2 68.2 23.5 0.9

DA 5.1 83.7 11.2 1.2

3.5 ML 0.0 94.5 5.5 5.2

LR 0.8 896.7 2.5 5.7

B 1.1 96.4 2.3 5.6

BC 1.1 96.4 2.3 5.6

SQ 3.0 82.2 14.8 4.1

DA 3.1 80.1 6.8 4.6

6.5 ML 0.0 92.8 7.1 8.6

LR 0.2 96.8 3.0 10.8

B 0.4 96.3 3.2 10.4

BC 0.6 96.4 3.0 10.8

SQ 0.2 88.3 10.9 8.7

B DA 1.4 90.9 7.7 9.3
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Table 5.2a: Lower and upper tail probabilities, coverage

probabilities and average lengths of the confidence intervals for

the common odds ratio using the unconditional likelihood.

P1x = 0.05+0.04k(20/K), K=5, alpha=0.05

Ny, | Ny | Psi | Method | Lower Coverage Upper Length
20} 20 {1.0 ML 5.6 93.4 0.0 1.3
LR 2.7 95.0 2.3 1.5

B 2.1 94.9 2.4 1.4

BC 3.4 94.3 2.3 1.5

SQ 2.8 94.3 2.3 1.5

3.5 ML 24.2 56.9 18.9 1.9

LR 2.5 95.4 2.0 6.1

B 2.7 95.3 2.0 5.8

BC 2.3 95.7 2.4 6.2

SQ 3.0 95.0 2.0 6.1

6.5 ML 31.4 44.2 24.4 2.9

LR 1.5 97.0 1.5 13.6

B 1.8 96.5 1.7 12.3

BC 1.7 85.9 2.4 12.3

SQ 2.2 96.2 1.5 12.5

10 10 | 1.0 ML 8.3 91.7 0.0 1.9
LR 2.9 94.7 2.7 2.4

B 2.7 94.4 2.8 2.3

BC 3.1 94.8 2.1 2.4

SQ 2.8 94.3 2.8 2.4

3.5 ML 23.6 58.0 18.4 2.8

LR 1.2 96.8 2.0 10.5

B 1.6 96.3 2.1 9.4

BC 1.4 95.7 2.9 9.8

SQ 2.0 96.0 1.9 10.3

6.5 ML 26.3 46.6 27.1 4.1
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Nyx | Nox | Psi | Method | Lower Coverage Upper Length
LR 0.1 97.0 2.9 21.7

B 1.0 96.0 3.0 18.6

BC 0.1 95.5 3.6 1.8.6

SQ 1.3 86.1 2.5 21.4

5 S 1.0 ML 0.0 96.1 3.9 2.3
LR 2.1 96.3 1.6 4.3

B 2.5 85.8 1.7 3.8

BC 3.7 84.4 1.9 4.1

SQ 2.8 94.3 2.9 4.2

3.5 ML 0.0 81.1 8.9 10.4
LR 0.4 96.8 2.8 16.1

B 0.3 96.1 3.5 13.4

BC 0.6 94.9 4.5 i3.6

SQ 2.0 96.1 1.9 14.2

6.5 ML 0.0 52.9 7.1 27.6
LR 0.6 897.4 2.6 23.2

B 0.1 95.9 4.0 22.9

BC 0.1 84.0 5.9 24.9

SQ 1.3 96.1 2.6 23.4

51 20| 1.0 ML 0.0 92.7 7.3 2.2
LR 2.0 95.9 2.1 2.8

B 2.4 95.3 2.3 2.7

BC 3.5 94.7 1.8 3.1

SQ 2.4 95.1 2.5 2.8

3.5 ML 0.0 81.5 8.5 8.1
LR 1.7 896.3 2.0 11.6

B 2.3 85.2 2.5 10.4

BC 1.3 96.5 2.2 11.1

SQ 3.1 94.8 2.1 11.5

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Ny | Noy | Psi | Method | Lower Coverage Upper Length
6.5 ML 0.0 90.4 8.5 15.1

LR 0.2 87.6 2.2 23.8

B 1.7 85.9 2.4 20.5

BC 0.3 86.2 3.5 22.7

SQ 2.2 85.6 2.2 23.7
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Table 5.2b: Lower and upper tail probabilities, coverage

probabilities and average lengths of the confidence intervals for

the common odds ratio using the unconditional likelihood.

pix = 0.05+0.04k(20/K), K=10, alpha=0.05

Ny | Nop | Psi | Methed | Lower Coverage Upper Length
20 20 (1.0 ML 0.2 85.3 4.5 0.9
LR 1.7 95.8 2.5 0.9

B 1.8 95.7 2.5 1.0

BC 2.0 85.3 2.7 1.0

50 1.8 85.7 2.7 0.9

3.5 ML 24.8 55.6 18.6 1.4

LR 2.4 85.8 1.8 3.9

B 2.8 84.9 2.3 3.8

BC 1.9 85.1 3.0 3.9

SQ 2.8 85.8 1.8 3.8

6.5 ML 29.0 44.5 26.5 2.1

LR 1.5 96.9 1.6 8.4

B 2.1 86.2 1.7 7.8

BC 1.2 86.2 2.6 8.1

5Q 2.3 96.1 1.5 8.0

10| 10 1.0 ML 0.0 893.9 6.1 1.4
LR 2.7 94.4 2.9 1.5

B 2.7 94.6 2.7 1.4

BC 2.4 94.5 3.1 1.5

SQ 2.7 94.4 2.9 1.5

3.5 ML 0.0 86.1 3.8 7.9

LR 1.0 96.5 2.5 5.8

B 1.2 6.1 2.7 5.6

BC 1.0 95.3 3.7 5.8

SQ 1.3 96.2 2.5 5.8

6.5 ML 0.0 87.2 2.8 20.6
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Ny | Nox | Psi | Method | Lower Coverage Upper Length
LR 0.3 97.5 2.1 11.8

B 0.4 87.2 2.4 11.0

BC 0.3 895.3 4.4 11.8

SQ 0.8 89.0 0.2 11.6

S 5 1.0 ML 0.1 96.7 3.2 1.5
LR 1.6 85.9 2.5 2.3

B 1.8 396.0 2.5 2.2

BC 2.0 85.5 2.5 2.5

SQ 1.9 85.6 2.5 2.2

3.5 ML 0.0 94.9 5.1 6.3

LR 0.6 87.3 2.1 7.9

B 0.5 97.1 2.4 7.4

BC 0.3 94.6 5.1 8.2

SQ 0.7 7.1 2.2 7.9

6.5 ML 0.0 85.4 4.6 16.4

LR 0.6 96.1 3.9 12.3

B 0.0 %94.8 5.2 12.3

BC 0.0 82.8 7.9 14.3

SQ 0.0 86.0 4.0 13.4

5| 20 1.0 ML 0.0 85.5 5.0 1.5
LR 2.3 95.6 2.1 1.6

B 2.0 86.1 1.9 1.6

BC 2.1 85.7 2.2 1.5

SQ 2.3 85.¢€ 2.1 1.6

3.5 ML 0.0 84.5 5.5 5.2

LR 2.1 9536 1.7 6.4

B 2.4 95.6 1.7 6.4

BC 2.4 85.6 2.0 6.2

5Q 0.6 94.2 5.2 6.7
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Ny | Nop | Psi | Method | Lower Coverage Upper Length
6.5 ML 0.0 92.9 7.1 9.6

LR 1.5 56.8 1.7 13.3

B 1.4 96.5 2.0 12.0

BC 0.2 92.5 7.2 10.7

SQ 1.6 96.7 1.7 12.6
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